

Scientist A - Remote Sensing

Name of the post	Subject	Syllabus
Scientist A Remote Sensing	Remote Sensing	<p>Fundamentals: Definition, history, components (energy source, platform, sensor, etc.). Electromagnetic (EM) Spectrum: Laws of radiation, interaction with atmosphere and Earth, spectral signatures (water, soil, veg). Platforms & Sensors: Satellite orbits, types (sun-sync, geo), sensor characteristics (optical, thermal, microwave). Resolution: Spatial, spectral, temporal, radiometric.</p> <p>Data Acquisition & Processing, Data Products: Formats, storage, display, data quality. Image Processing: Geometric/radiometric correction, noise reduction, enhancement (contrast, PCA). Classification: Supervised, unsupervised, decision trees, accuracy assessment. Geoinformatics: GIS basics (raster/vector), spatial data integration, web GIS. GPS/GNSS: Concepts, constellations (GPS, GLONASS, IRNSS), data processing.</p>
	Geology	<p>General Geology: Earth's origin, internal structure, processes (plate tectonics, earthquakes, volcanoes). Mineralogy: Crystal structures, physical properties of minerals, and identification. Petrology: Igneous, Sedimentary, and Metamorphic rocks (formation, classification, textures). Structural Geology: Rock deformation (folds, faults, joints, foliations) and stress/strain analysis. Stratigraphy: Principles of rock layering, correlation, and geological time. Paleontology: Fossils, evolution, and their use in dating rocks. Geomorphology: Landforms, weathering, erosion, and surface processes. Applied & Specialized Geology: Economic Geology: Ore deposits, mineral resources (metals, coal, hydrocarbons). Hydrogeology:</p>

		Groundwater occurrence, movement, and resources. Engineering Geology: Geological factors in construction, site selection, hazards. Geophysics & Remote Sensing: Geophysical methods, GIS applications in mapping. Geochemistry: Distribution of elements, geochemical cycles.
	GIS	Fundamentals: Definition, components (hardware, software, data, people, methods), functionality, advantages, and applications. Data: Spatial (points, lines, polygons) and attribute data, data structures, formats, and management. Mapping & Cartography: Digital mapping, map projections, design principles, symbolization, and map composition. Geodatabases: Creating, managing, editing, and topology building.
	Physics	Mechanics: Motion, Forces, Energy, Rotation, Gravity. Electromagnetism: Electricity, Magnetism, EMWaves. Thermal Physics: Heat, Thermodynamics. Optics: Light behavior. Modern Physics: Quantum Mechanics, Electronics
	Environmental Science	Fundamentals: Introduction, Multidisciplinary Nature, Sustainability & SDGs, Basic Ecology. Ecology & Ecosystems: Structure/Function, Energy Flow, Food Webs, Succession, Terrestrial & Aquatic Ecosystems, Biodiversity. Natural Resources: Forest, Land, Water (over-exploitation, conflicts), Minerals, Marine, Energy (Renewable/Non-renewable). Pollution & Control: Air: Composition, Smog, Acid Rain, Ozone Depletion, Particulates. Water: Quality, Treatment, Wastewater Management, Heavy Metals. Soil: Composition, Contaminants, Soil Health. Waste Management: Solid Waste, E-Waste, Biomedical Waste (3Rs, Disposal). Environmental Chemistry: Thermodynamics, Kinetics, pH, Electrochemistry, Organic Pollutants (Pesticides, Polymers). Environmental

		<p>Microbiology: Principles, Water/Soil Microbiology, Recombinant DNA Tech.</p> <p>Climate Change: Greenhouse Gases, Global Warming, Urban Heat Islands, El Niño/La Niña.</p> <p>Environmental Management & Policy: EIA, EMS (ISO 14000), Auditing, Law (Water Act, EPA, NGT), Sustainable Development Goals.</p> <p>Environmental Geosciences: Weathering, Geomorphology, Natural Hazards (Floods, Earthquakes).</p>
	Geography	<p>Physical Geography, Geomorphology: Earth's interior, landforms (mountains, rivers, coasts), geomorphic processes (weathering, erosion).</p> <p>Climatology: Atmosphere (composition, structure), solar radiation, climate patterns, climate change.</p> <p>Oceanography: Ocean basins, currents, tides, marine resources, coastal processes.</p> <p>Biogeography: Soil formation, plant/animal distribution, biomes, biodiversity.</p> <p>Human Geography, Population Geography: Distribution, density, growth, composition, migration, demographic transition.</p> <p>Economic Geography: Human activities (primary, secondary, tertiary), resources, industries, sustainable development.</p> <p>Settlements: Rural and urban patterns, urbanization, urbanization impacts.</p> <p>Cultural Geography: Human races, cultural realms, geopolitics.</p> <p>Geography as a Discipline & Mapping: Nature & scope of geography. Earth's origin, movements, geological time scale. Cartography & map skills.</p>
	Disaster Management	<p>Introduction to Disasters: Definitions (hazard, vulnerability, risk, resilience), types (natural & man-made), impacts, global trends, and India's profile.</p> <p>Disaster Management Cycle: Phases of mitigation, preparedness, response, and recovery/reconstruction.</p> <p>Risk and Vulnerability: Assessing factors affecting</p>

	<p>vulnerability, risk analysis techniques, and community-based approaches. Disaster Preparedness & Mitigation: Planning, early warning systems, public awareness, role of IT, and structural/non-structural measures. Disaster Response: Search & rescue, logistics, communication, medical response, psychological support, and role of agencies (NDRF, NGOs). Legal & Institutional Frameworks: Disaster Management Act 2005, National Policy, roles of central/state/local bodies (NDMA, PRIs). Technology in DM: Remote Sensing (RS), Geographic Information Systems (GIS), Drones, AI, ICT applications. Health & Environment: Health impacts, psychosocial care, climate change, and environmental aspects.</p>
Agriculture	General Agriculture-All basic courses (Agronomy, Genetics & Plant Breeding, Soil Science & Agricultural Chemistry, Plant Physiology, Plant Pathology, Agricultural Economics & Agricultural Marketing, Statistics, Plant Biotechnology , Plant Biochemistry)
Forestry & Horticulture	Horticulture, Forestry
Geo-informatics	<p>Fundamentals of Geoinformatics: An introduction to the scope of geoinformatics, including its constituent technologies like cartography, geodesy, photogrammetry, GIS, and remote sensing. Remote Sensing: The principles of remote sensing, including the electromagnetic spectrum, sensors, satellite programs, and image interpretation (both visual and digital). Geographical Information System (GIS): Concepts of GIS, spatial database creation, data management, and spatial analysis techniques. Digital Image Processing: Image pre-processing (geometric and radiometric corrections), image enhancement, feature extraction, and classification</p>

		techniques. Global Navigation Satellite System (GNSS): Fundamentals of GNSS, its use in surveying, and data acquisition.
--	--	---